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ADDENDUM 

Invariants for the time-dependent harmonic oscillator 11: 
Cubic and quartic invariants 

R K,Colegrave, M Sebawe Abdallat and M A Mannan 
Department of Mathematics, Chelsea College (University of London), 552 King’s Road, 
London SW10, UK 

Received 9 November 1983 

Abstract. The existence is established of homogeneous time-dependent invariants of 
arbitrary degree in the coordinate and momentum for the harmonic oscillator with variable 
mass and frequency. In the constant mass, constant frequency case the cubic and quartic 
invariants are calculated and some comments are made on the connection with the linear 
and quadratic invariants. 

We shall seek time-dependent invariants for the harmonic oscillator which are 
homogeneous in q and p (the conjugate coordinate and momentum) and of degree 
greater than two. We follow the well known approach of Lewis (1967, 1968) and 
Lewis and Riesenfeld (1969). The existence of such invariants of arbitrary degree will 
be demonstrated, and explicit forms for the cubic and quartic invariants will be given 
for the simple harmonic oscillator. 

Let the harmonic oscillator be represented by the Hamiltonian 

H =$p2/m+$mw2q2,  (1) 
where the mass m and frequency w may be time dependent. Before we consider 
higher-order invariants, let us look briefly at the position with regard to the linear and 
quadratic invariants for system ( l ) ,  especially in the constant mass, constant frequency 
case. For invariants I ( t )  of the form 

I1 = a14+P1p, (2) 

1 2 =  a2q2+P2(qP+N)+ ?’2p27 (3) 

al  = m o 2 P l ,  A =  - d m ,  (4) 

ci2 = 2 m w ’ ~ ~ ,  j 2 = - a 2 / m + m w 2 y 2 ,  j 2  = -2p2/ m. ( 5 )  

we have the following equations for the coefficients 

Equations (4) are easily treated and equations (5) have been much discussed. Lewis 
and Riesenfeld (1969) treated the case of constant mass and variable frequency and 
Colegrave and Abdalla (1983) have concentrated on the case of variable mass. Wollen- 
berg (1980, 1983) has discussed the general case. For our present discussion we may 
restrict ourselves to the case of constant mass and constant frequency ( m  = mot w = w o ) ;  
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then on solving equations ( 4 ) ,  ( 5 )  we find 

a l = A s i n ( w o t + t ) ,  P I  = ( mowo)- lA cos(wot + 0 ,  ( 6 6  b )  

with A, 5 arbitrary, and 

a2 = B + A sin(2wot + t) ,  
p2 = ( mowo)-'A cos( 2wot + 0, 
y 2 =  (mowo)- ' [B-A sin(2wot+[)], 

with A, B, 5 arbitrary. 
It is quite clear from the straightforward analysis of equations ( 5 )  with constant 

coefficients that (7a,  b, c) give the only possible quadratic invariants for the constant 
mass, constant frequency oscillator. We shall show, using the analysis of PO 4, 5 of 
Colegrave and Abdalla (1983) that the Lewis invariant for this system reduces to a 
form in agreement with ( 7 ) .  We put E ( t )  = O  and interchange p and y in accordance 
with our present notation, then we see that 

c = w0[p2(O) + aZ(0)l, (8) 

1 = P 2 W ,  m = a 2 ( 0 ) ,  n z  = p 2 ( 0 ) a 2 ( o ) -  coo2. ( 9 )  

Noting that z = 1 and writing G l  = G 2  = G etc. we find that equations ( 5 . 5 )  (with p, y 
interchanged) reduce to 

( l o a )  

( l o b )  

(10c)  

G ( t )  = t m ; w ~ { p 2 ( o ) + a 2 ( 0 ) + [ p 2 ( 0 ) - a 2 ( O ) ]  cos 2wot+2n sin 2w0t}, 

P ( t )  = t m o o 3 2 n  cos 2wot-[p2(0) -a2 (0 ) ]  sin 2w0t}, 

y ( t )  = t w ~ { p 2 ( ~ ) + a 2 ( ~ ) - [ p Z ( ~ ) - a Z ( 0 ) ]  cos 2wot-2n sin h o t } .  

We may identify with a2, P z ,  yz in equations (7) if we choose 

A =&&o:{[p2(0) - a 2 ( 0 ) ] 2 + 4 n 2 } 1 ' 2 ,  

B = tm;w:[p2(0)  + a2(0)], 

6 = tan-'{$p2(0) - a2(o)]/ n } .  

Thus the Lewis invariant reduces to ( 7 ) .  
We seek a cubic invariant in the form 

I3(t)  = a ( t ) q 3  + 3P(t)qpq + 3 Y(t)WP + w p 3 ,  ( 1 2 )  

where we have written the middle terms in a convenient self-adjoint form suited to 
the quantum mechanical case in which [q, p ]  = constant implies 

q 2 p + w 2  = 2qw, P24  + 4P2 = 2WP. ( 1 3 )  

However, as discussed by Wollenberg (1980) ,  we might as well work classically. Any 
invariants that we find will carry over to quantum mechanics provided we set q 2 p  + qpq, 
p2q+pqp as in (12). 

In the classical case we seek an invariant by solving 

0 = dI/df = aI /at+ (aI/aq)aH/ap- (aI/ap)aH/aq. (14)  
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Applied to the sought after cubic invariant (12) this gives 

o = (ci - 3 m w 2 ~ ) q 3 + 3 ( @  + a / m  -2mw2y)q2p+ 3 ( j + 2 ~ / m  - mw2S)qp2 

+ ( 8  + 3 y / m ) p 3 .  ( 1 5 )  

(16a, b)  

( 1 6 ~  4 

Thus we need to find a, P,  y, S to satisfy (cf equations (4) ,  ( 5 ) )  

ci = 3mw2p, 

y = - 2 ~ / m  + mw26, 

f i  = - a / m  + 2mw2 y, 

6 = -3 y / m .  

Such a set of linear equations admits a unique solution (Coddington 1961), showing 
that a family of cubic invariants exists for the general time-dependent oscillator. 

Again, let us consider the possibility of a self-adjoint quartic invariant 

Z4( 2) = aq4 + 2P ( q 3 p  + w3) + 3 Y (qwp + ww + 2%P3 + P 3 4 )  + E P 4  (17a) 

14(t) = a q 4 + 4 p q 3 p + 6 y q 2 p 2 + 4 S q ~ 3 + ~ p 4 .  (17b) 

in the quantum mechanical case, or in classical form 

Equation (14) now requires 

ci = 4mw2p, fi  =-a/m+3mw2y, y = -2p/ m + 2 mw ' 6 ,  (18a ,  b, c )  
( 1 8 4  c )  d = -3 y / m  + mw2e, E = -4S/m. 

Again we see that a family of quartic invariants always exists. Moreover, we can 
extend the argument to invariants of any degree. 

For the present we shall not attempt to find a general solution of equations (16) 
or ( 1 8 )  (or of further sets of equations for higher-degree invariants). We shall be 
content with solutions in the constant mass, constant frequency case ( m  = mo, w = wo). 

Eliminating a, 6 from equations (16) and writing D = d/dt, we find 

(D2+3wG)P-2mowiDy=0, 

(2 /m,)DP + ( D 2 +  30;) y = 0. 

Eliminating y yields 

( D 2 +  wi)(D2+ 9wi)p = 0.  (20) 

a = A  sin(wot+5)+Bsin(300t+7)),  ( 2 1 ~ )  
P = (mowo)-'[fA cos(wot+5)+ B cos(3wot+ T ) ] ,  ( 2 1  b) 

Y = (mowo)-'[fA sin(wot + 5) - B sin( 3wor+ T ) ] ,  

6 =(mowo)-'[A cos (wo t+5) -Bcos (3wot+~)] ,  ( 2 1 4  

Hence the general solution of equations (16) with m = mo, w = wo is 

where A,  B, 5, 7 are arbitrary constants. 
Similarly on eliminating a, y, E from equations ( 1 8 )  we find 

(D2+ 10wi)P-6(m0w~)*S =0, 

- (61 m:)P + ( D2 + low;) S = 0 

(D2+4wi)(D2+ 16wi)P = O .  
which yields 
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Being careful not to introduce any more integration constants than is necessary, we 
find the general solution of (18) with m = mo, w = wo to be 

Q = C + A  s in (2wot+~)+Bs in (4wot+77) ,  (24a) 

p =(mowo)-l[iA cos(2wot+5)+B C O S ( ~ W ~ ~ + ~ ) ] ,  (24b) 
y = ( m o w o ) - 2 [ f ~  - B sin(400t + 77)], (24c) 

s = ( m o w o ) - 3 [ i ~  cos(2wot + 6) - B cos(4w0t + v)], ( 2 4 4  

E = (mowo) -4 [C-~  s i n ( 2 w o t + t ) + ~  sin(4wot+ 77)], (24e) 
where A, B, C, 6, 7) are arbitrary constants. 

simple harmonic oscillator. The solution of the equation of motion q +  w i q  = 0 is 
Finally, we check that we have indeed found cubic and quartic invariants for the 

q = x cos(w0tS x), 

p = mod = -mowox sin( wot + x). 

(25a) 
where X, x are arbitrary constants. The momentum is 

(25b) 

Substituting (21), (25) into (12) we find, after some elementary manipulation, that 
13(r) reduces to the constant quantity 

I3  = X3[A sin( 6- x) + B sin( 77 - 3x)]. 

I4 = X4[A sin( 6 - 2x) + B sin( 77 - 4x) + C]. 

(26) 

Again, substituting (24), ( 2 5 )  into (17) we find 

(27) 

Obviously similar results exist for invariants of degree greater than four in the constant 
mass, constant frequency case. 

Collecting up results from (6), (7), (21) and (24), we have found the following 
homogeneous invariants: 

II (t l 1 = sin( mot + 6 ) q  + W w o t  + t1 )p ,  (28a) 

(28b) 12A(t2) = sin(2wot+t2)q2+2 cos(2wot+ t2)qp-sin(2w,t+ t2 )pz ,  

12” = q 2 + p 2 ,  (28c) 
I?(&) = sin(wot+ t3)q3+cos(wOf + t3)q2p+sin(wot + . $ 3 ) q p 2 + ~ ~ ~ ( w o t +  t3)p3, 
I f ( 7 7 3 )  = sin(3wot + 7.1~14~ + 3 cos(3wot + 773)q2fi- 3 sin(300t + q3)qp2 

(28d) 

+ 2 cos(2wot + t4)qp3- sin(2wot + t4)p4, (28f) 
148(v4) =sin(4wot+ 774)q4+4 c o s ( 4 ~ ~ t + ~ ~ ) q ~ p - 6  sin(4wot+ 774)q2p2 

where we have written i j  = ( mowo)-lp and for simplicity we have used the classical 
unsymmetrised forms. Excluding 1; and Is, these are one-parameter families and, 
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in general, any two members of the same or different families are functionally indepen- 
dent. Obvious relations between the invariants (28) are, 

1ao = m)K = zm12B. (294  b )  
If and I," are not so easy to express in terms of lower-order invariants. 

There is no doubt that further study is needed even in the case of the constant 
mass, constant frequency oscillator, where we can usefully extend the discussion to 
higher-degree invariants. In the more general case of variable mass or variable 
frequency further work can be done on the solution of equations (16), (18) and on 
the characterisation of invariants (cf Wollenberg 1980, 1983). This should be fairly 
straightforward in the case of the damped oscillator (Colegrave and Abdalla 1981, 
1983). 

The significance of invariants and their practical application are not easy to appreci- 
ate. Lewis and Riesenfeld (1969) discuss an important application to the calculation 
of transition probabilities. Leach (1977, 1981) and Lewis and Leach (1982) give some 
interesting applications in gravitational theory and plasma physics. Ray and Reid 
(1 982 and references therein) give some further applications. Adiabatic invariants 
have been of paramount importance in the development of quantum mechanics and 
one wonders if more use could not be made of non-adiabatic invariants. The slow 
lengthening of a pendulum gives rise to the equation of motion cj+w2(t)q =0, where 
w ( t )  is slowly varying, and the adiabatic invariant E ( t ) / w ( t ) ,  where E is the energy. 
The present discussion applied to the more general case when w ( t )  is any differentiable 
function and we see the existence of an infinite hierarchy of homogeneous invariants. 
We ask what the significance of these invariants is in the non-adiabatic motion of the 
oscillator. We expect to report on this question in a further communication. 
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